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OUTLINE

|. Introduction

STATIC HIGH-PRESSURE SCIENCE
UNIQUE ADVANTAGES OF SYNCHROTRON INFRARED

Il. Highlights: A Decade of New Findings
SELECTED APPLICATIONS:
Physics, Chemistry, Materials Science,
Earth and Planelary Science, Biology and Soft Matter

lll. New Opportunities and Challenges
SELECTED GRAND CHALLENGES
A NEW OF HIGH-PRESSURE DEVICES
POSS/BLITIES FOR NSLS-//
Synchroftron infrared and high pressure
- an extraordinary maltch
THEMES  Synchrotron IR/x-ray probes
- unique capabilities of the NSLS
Full integration of fechniques
- future facilities
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Temperature, 1000 K

ADVANCES IN STATIC HIGH PRESSURE
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Free Energy Changes and Chemical Bonding
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Energy

* P-V work can exceed
binding energies

* Dramatic changes in bonding
and electronic states

« Stored energy in metastable
phases

Kinetic Energy
= fp‘ srydr

Coulomb + Exchange I
+ Correlation Energy = ], T

Interatomic Distance




HIGH-PRESSURE TECHNOLOGY

Plethora of New Instruments

PRYSICS HII]HY
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Synchrotron Infrared Spectroscopy and High Pressure

U4IR: 1990-1992
» First megabar synchrotron IR measurements

U2B: 1992-1998

* PRT with NSLS, Northrup Grumman
» Nicolet 750, custom built microscopes
U2A: 1998-

s
J - Integrated optical/IR spectroscopy facility High-Pressure Beam lines
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U2A Beamline Upgrade:
IMPROVED FAR-IR AND BEAM DELIVERY
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A WEALTH OF FINDINGS:
1. Condensed Matlter Physics

- HYDROGEN AT MEGABAR PRESSURES : 2=
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[Hemley ef al, Phys. Rev. Lett. 76,
ANOMAIOUS 1667 (1996); Chen et al. Phys. Rev. Lett.
UNEXPECTED PHASE DIAGRAM 76, 1667 (1996) |
CHARGE TRANSFER STATE _
[Hemley efa/., Nature 369, 384 (1994)] [MaZIn etal, PhyS Rev. Lett. 78, 1066 (1997),

Goncharov et al., ibid. 75, 2514 (1996);
Lorenzana et al., ibid., 63, 2080 (1989)]
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A WEALTH OF FINDINGS:

1. Condensed Matter Physics " [
I R
) ) ) [Kohanoff et al., 2¢ | 788
Multimegabar Vibrational Spectroscopy Phys. Rev. Lett. 83, | &, & | g4,
4097 (1999)] > %o
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A WEALTH OF FINDINGS:
1. Condensed Matlter Physics

SrpCuCl202 magnon excitations IR, NaCl medium
- INFRARED EXCITATIONS IN 0.4 u) e p.oea
HIGH-Tc SUPERCONDUCTORS T fre
) " g-(:\ll:gn‘:)sn?sl, :;2)0 K Regr )?F ¢ 7.0
[Struzhkin ef al. J. Phys. Condens. Matter, O3] o corsoveceins O]

s
in press] /% ¥

- NOVEL TRANSFORMATIONS % # P e
Mid-IR | /JH - P |
0 5 10 15 20 25 4000 6000
Pressure (GPa) Wavenumber (cm” "
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[Struzhkin et al., Phys. Rev. B 62, 3895 (2000)]

Absorbance (arb. unit)

100 200 300 400 500 600 700 800 900 10001100
Wavenumber (cm™) [Chen et al. Phys. Rev. B

Pressure-induced amorphization of HfW,Og 64, 20040 (2002)]
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A WEALTH OF FINDINGS:
2. Chemistry

HIGH PRESSURE SPECTRA
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* Non-molecular ice identified by IR reflectivity above 60 GPa
» X-ray Confirms spectroscopic data: bcc-based structure

Carnegie Institution



A WEALTH OF FINDINGS:
2. Chemistry

- ANOMALOUS e
TRANS/ITIONS
IN ICE VIl

Temperature (K)
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A WEALTH OF FINDINGS:
2. Chemistry

- VAN DER WAALS
COMPOUNDS

[Loubeyre ef al. (1994);
Datchi ef a/. (1997);
Hemley (2000);

Ulivi et al. (2001)]
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A WEALTH OF FINDINGS:
2. Chemistry

- NOVEL MOLECULAR PHASES

* NO*-NOj;: an unusual ionic
phase probed by far-IR
and x-ray

Far-IR f\
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A WEALTH OF FINDINGS:
3. Earth and Planetary Science

- VIBRATIONAL PROPERTIES
(Transition mechanisms and
thermodynamic properties)
- INSULATOR-METAL TRANS/ITIONS
- MICROSPECTROSCORPY OF INCLUSIONS
- DENSE SILICATES IN THE MANTLE

HYDROUS PHASES IN THE DEEP MANTLE:
Hydrogen Incorporation in Dense Silicates

é
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'

D01 '-
LR}

*e

"Phase B Superhydrous B Phase E

In Situ Measurements:
MULTIPLE CRYSTALS

A
4

200 gm

Displacive transformation in cummingtonite
20—+
[ ‘ A ——————
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o
T

0.0 ===
3550 3600 3650 3700 3750
Frequency, cm’’

[Yang ef al, Am. Mineral. 83, 288 (1998)]



A WEALTH OF FINDINGS:
3. Earth and Planetary Science

High-Pressure Behavior of K, 5,Mg4 93Si; §g0-H o4
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A WEALTH OF FINDINGS:
3. Earth and Planetary Science

Neptune

~ 5000 K
~300 GPa

["] Molecular hydrogen %
"Ice" (P < 300 GPa) |

[ "Ice" (P> 300 GPa) |}

* Hydrocarbon stability to
megabar pressure
- PLANETARY 300 K compression
» Consistent with powder
GASES AND ICES and single-crystal diffraction

* New physics (H-rich alloy)?

[Badro et al., to be published|
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A WEALTH OF FINDINGS:
4. Biology and Soft Malter

- BIOCHEMICAL REACTIONS
IN HYDROTHERMA FLUIDS HEME DOMING-MODE
- LIFE IN EXTREME ENVIRONMENTS ——F————————— T
(>1600 MPa) 7 I HEME C-12
Shewanella MR1 Escherichia coli 6 f_ 70 -
E 5 o
g | 5
S 4 5
S o
: :
2 2'_% ® increase P |
2 EIVMy|ar23 sample size: d=810 um } © decreasePP 1
Tr t=280 um
scan: 20 minutes
0 0 s o0 2 4 6 8
Wavenumber (cm™) P (kbar)

- BIOMOLECULE VIBRATIONAL DYNAMICS

[Klug et al., Proc. Nat. Acad.
Sci. 99, 12526 (2002)]
[Sharma et al., Science 295, 1514 (2002)] « Doming mode found at 57 cm-!

* Far-IR at high pressure

Carnegie Institution



A WEALTH OF FINDINGS:

5. Materials Science and Technology

- SUPERHARD MATERIALS [zhao etal, J. Mat Sci, in press]

- HYDROGEN STORAGE MATERIALS

T

Novel H,-H,0 structure |l clathrate
Stable at ambient pressure to 145 K
5.3 % hydrogen (4.5 % DOE 2005 target)

Absorbance

0.05

100 kPa,140 K

100 kPa,126 K
[W. Mao et al.

J\/\/‘/\%\’% Science 297,
2247 (2002)]
100 kPa, 80 K

500 MPa, 80 K

4100

4120

- HIGH ENERGY DENSITY MATERIALS

N 1 . Band gap ener
2 I(“ 170 GPa 121 9P b

I 160 GPa |
! 151GPa |
| 140GPa |

134 GPa |

Absorbance

115GPa |

97GPa |
| 80GPa |

L 60 GPa

2400 2450 2500
Wavenumber (cm'ﬂ) Pressure (GPa)

300

NITROGEN DISSOCIATION SEMICONDUCTING BEHAVIOR

4140 4160 4180 4200
Wavenumber (cm")

[Goncharov ef al., Phys. Rev. Lett. 85, 1262
(2000); Eremets ef al. Nature 411, 170 (2001)]



OPPORTUNITIES AND CHALLENGES

» Higher pressures and temperatures

- physics/chemistry/astrophysics/planetary science
* Higher precision/acccuracy/sensitivity

- all pressure ranges

» Broader wavelength range

- far-IR, THz
 Time resolution

- [fransition kinelics to chemical dynamics
* Integration of techniques

- dlffraction, inelastic scaftering, imaging
* New generation of instrumentation

- large volume, smart anvil cell designs

Carnegie Institution



OPPORTUNITIES AND CHALLENGES:
Grand Challenge of Hydrogen at Extreme P-T

3000 | A
Shock wave, Weir et al. Hyd rogen
2500 {
g 2000 —: 3 i 1 Theory (Scandolo et al.)
° ,
2 LIQUID \ LIQUID (METAL)
S 1500 - \
= ’ \
qEJ I Kechin extrapolation =N
— - Our data : S0
1000 { o o —o.\
L .. ™~ \D f?
500 - - SOLID - ~_ oot o
1 | A%%‘
- :I Datchi et al. it A
z i I
5 ol e
s 0 50 100 150 200 250 300 350
f% Pressure (GPa)
i - Liquid ground state?
* High-T_ superconductor?
] * Higher P-T needed
* Infrared combined with x-ray inelastic

Raman shift (cm )

scattering phonons/electrons
[Gregoryanz et al., Phys. Rev. Lett. 90, 175701 (2003)]
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OPPORTUNITIES AND CHALLENGES:

Electronic Structure, Bonding, Synthesis of Novel Material

-NOVEL SUPERCONDUCTORS
(e.g., 23 elements; O, S, B, Fe, Li)

Periodic Table of Superconductors

P=0 M
P>0 M

m |® TG w (v |m |m |®

Pr (Nd |Pm|Sm|Eu |Gd [T Dy | Ho | Er l Tm | Yb

T B (m m (B w (@ [ |m | |wm @ |w
'a Mp | Pu |Am|Cm|Bk |Cf | Es | Fm | Md | No | Lr

[Struzhkin ef al. (2002)]

- EXCITONIC INSULATOR STATES?

I
- 1,546
093 =,

ﬂ'ﬂg.-,--‘;‘_’_’-" "t [Eremets et al. (2000)]

. 141 GPa
&g N 1,544
s -_=_:.'-= Electrical
b T 155 GPa Resistivity to
| ' I ' I 27 mK
0 1 2 3 and 160 GPa

Temperature, K

- HIGHEST TEMPERATURE
SUPERCONDUCTIVITY
T.=164 Kat 30 GPa [Gaoetal.(1994)]

1.0 |

0.8 |
=
[Te]
o~
= o6}
Q
~ 7
& 04t 8L A ¢
| /-/
00 80 100 120 140 160 180

T(K)

Integrated studies to >300 GPa and
to millikelvin temperatures

Far-IR to optical range

Combined with x-ray inelastic
scattering phonons/electrons

Recovery to ambient

Carnegie Institution



OPPORTUNITIES AND CHALLENGES:
Spectroscopy of Earth Materials at Extreme P-T

- CHEMICAL REACTIONS IN THE DEEP EARTH
- HYDROCARBON STABILITY AND ENERGY RESOURCES
- IN SITU HIGH P-T STUDIES OF

PLANETARY GASES AND ICES

~ 5000 K §

~300 GPa

["] Molecular hydroge i
[ “ice" (P < 300 GPa) |}
[] "Ice” (P> 300 GPa) |

Neptune

Intensity

400

380

360

340

320

300

280

260

240

RQtPfiﬁn of.the inner core -

uj

M 0052 Pue BdD) GG
84 Jo g4UX nis

30 40 50 60 70 80
Energy (KeV)
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OPPORTUNITIES AND CHALLENGES:
Life in Extreme Environments and Origin of Life

- BIOCHEMICAL REACTIONS
- HIGH-PRESSURE MICROBIOLOGY

Shewanella MR1 Escherichia coli

- e

IR/optical/x-ray
imaging with P-T-t

T
e

Pei el e nl
e ‘*a oA

Before compression
0.1 MPa

Single cells under
stress

1400 MPa

“Test-tube” study of
microbial evolution
and adaptation

==  After compression

-

1400 MPa

Combined with other
probes in new
instrumentation

[Sharma ef al., Science 295, 1514 (2002)]

Carnegie Institution



OPPORTUNITIES AND CHALLENGES:
Towards TPa Pressures with Large Volume Anvil Cells

Diamond Growing in a Plasma Reactor

Growth of Diamond Anvils by
Homoepitaxial Chemical Vapor
Deposition

[Yan et al. PNAS 99, 12523 (2002)]

GOALS:

* Higher pressures (1 TPa
or 10 Mbar) and
temperatures (>1 eV)  2.45 mm high
0.28 carats
0.45 mm seed
Grown in 1 day

[Yan et al. Phys. Stat. Sol.
201, R27 (2004)]

« Larger sample volumes
needed (e.g., diffraction
limited far-IR)

» Accuracy/precision
compromised

» Applications of several

simultaneous probes I/ I/ \I \I
limited (IJVD horlnoepitaxlial growlth
@ T O

1I.7mrln ‘<3.5mm-‘ -—7.5mm——» - 16.2mm -

0.025 ct 0.25 ct 2.5ct 25 ct  Carnegie Institution



OPPORTUNITIES AND CHALLENGES:

Towards TPa Pressures with Large Volume Anvil Cells

GOALS:

* Higher pressures (1 TPa
or 10 Mbar) and

temperatures (>1 eV)

« Larger sample volumes
needed (e.g., diffraction

limited far-IR)

WHAT'S NEXT

Diamond Growing in a Plasma Reactor

Growth of Diamond Anvils by
Homoepitaxial Chemical Vapor
Deposition

[Yan et al. PNAS 99, 12523 (2002)]

« 2.45 mm high
 0.28 carats
e 0.45 mm seed

Grown in 1 day
[Yan et al. Phys. Stat. Sol.

Diamonds Find a Friend in the Semiconductor Sector

ANNE EISENBERG

e who watches the Academy
s knows, diamonds are still the
Hlamorous of gemstones. But as
achnigues for synthesizing dia-
e, the stones may one day be
¥ on mavie stars, but also in la-
mitting diodes, integrated cir-
her nondecorative but highly
Mications.

‘ause many diamonds can be
¥ in re chambers
m from & methane-hydrogen
sxed into collecting and form-
ystals around tiny starter dia-
process yields large, rapidly
onds that may one day find a
& other things, semiconductor

ments used to measure it," sald Russell J.
Hemiley, a senlor staff scientist at Carnegie.

The ressarch group, which looking
into the vapor deposition method four years
agn, has created diamands as thick as about
ane-ifth of an inch and as wide a5 two-fifths
af an'inch, Dr. Hembey said.

Dr. Hemley, a member of the institution's
Geophysscal Laboratory, aid his interest in
diamands was related to basie research in
the behavior of materials at extreme pres-
sures. “We need large, perfect diamaonds o
make high-pressure devices for our re-
search,” by said. But diamonds like the ones
the group has grown will have many other
uses, including electronics, he sasd.

Apalio Diamond, o Beston company, is
also growing large, single crystal diamonds
by using a version of the chemical vapar
depasition method, said Robert C. Linares, a
founder of the company.

n Reserve Unlversity who was
leveloping the technigque of cre-
ds from gases, calied cherrical

I%h Institution of Washington,

now ed the tech-
" |Im:k single crystals of dia-
of anly grow extremely rapidiy
oait to be considerably harder
Hamonds.

[u:nulyb‘uw hard the diamond
t tends to domage the instru-

aberg@nytimes.com

WaYs (o use
diamonds as a more durable aliernative o
silicon, which does not stand up as well to
high temperatures and stress. But many

[
RESILENT A synthetic single-crystal dia-
mond created from gases in a technique
lenoamn as chemical vapor deposition.

film," Dr. Hembey said Afterward the dia-
monds are heated to more than 3,500 de-
grees Fahrenheit and put under pressure to
harden them further.

devices are one of several

clnﬂ'lzd in the form of a film
with o jumhle af diamond crystals oriented
in varying woys. leading 1o defects that
could trag electrons,

The researchers at Carnegie grew their
diamonds from a gaseous mixture heated to
high temperatures to produce the carbon
that condensed on a diamond kernel “We
start with a seed, and the carbon atoms then
rain out from the plasma, arranging them-
selves as a single crvstal rather than as a

areas in which the new generation of syn-
thetic diamonds may find use. Currently
most transisiors, diodes and integrated cir-
cults are based on silican, which is “doped"”
‘with impurities to alter the flow of clectrons.

Diamond has a crystal structure similar
to that of silicon and shares many of its
properties.

which are natural insulators, 0 improve
their electrical properties. Doping dia-
monds with baron has worked well to tuen
them into a type of semiconductor called o
ptype or pedinmond, for the positive
charges that carry current,

But transistors and diodes akso need a
second kind of doped semiconductor materi-
al, called n-type, and that diamond has
turned cut to be hard to devise.

“The major cutstanding problem for dis-
mand semiconductor electronics is the lack
of a good n-type doping agent,” said James
E. Butler, n research chemist at the Naval
Research Laboratory who has canducted di-
amond research for 17 vears, primarily
working an improving the chemical vapor
deposition process. “Without i, diamend
electranics will be seriously limited.”

Netype diamonds have been developed, in-
cluding some that use phosphorus, he said,
but none af the materials are entirely satis-
factory. Lust year Dr. Butler and colleagues
reported that they had created a boron-
doped diamond grown by vapor depesition
that was then treated with deuterium.

“It's an n-type and it"s reproducible.” Dr.
Butler said. *But we don't vet understand
the fundamentals "

At Case Western, Dr. Angus and his col-

have been mal rogress, al-
though their solution is !akal-“fgmz perfect, b
said, Working with a doctoral student, Sally
Eaton-Magana, now a postdoctoral assock-
e atthe Naval Research Laboratory, he

But turning df
tors has proved a tough
cause of the diffienities in danine diamende

ds- into doped diamonds with both
job, primarily be-  baran and. sulfur. "We added two elnmns
At tha cama tHima tn arkisss st ko

0.025 ct

201, R27 (2004)]
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down o o hundred pounds,” he said. I I I I
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solved, many ressarchers are hops
16.2mm -

lor," he said. It works, he added, but
trons dan't move fast enough.

surface region

trollable properties. “You don't

thons — for instance, in switching)
for high-speed trains. These trains|
10,000 volts or so, he said, and use 5
ductors to help control the pawer. G
the cars use big semiconductor waf
related heavy gear that add up to rg
ton per railcar,

the pew generation of synthetic d8
will play a role in computers. “Chips.
ting hotter and hotter, the more trag
you add,” said Jimmy L. Davidson, 8
sar of electrical and compater engl
at Vanderbilt University who ha
worked in diamond research. Silieo
working at about 200 degrees Fahren
said, but dinmond has internal pro
that allow it 1o work at 1,000 degreel
bt

-—7.5mm————» -

e said, “no fans willt

0.25 ct 25 ct
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OPPORTUNITIES AND CHALLENGES:
Towards TPa Pressures with Large Volume Anvil Cells

200

SINGLE CRYSTAL AL
DIAMOND
= T i A Annealed CVD X-RAY °Re
el EOS [ .
160 |- :‘ Annealed Ib synthetic | 150 -
A 0O A CVD
w A = .:r,:zﬁﬁl oy ® Two runs:
& Mo = Ib synthetic i 0 NSLS (EDX)
2 O Q APS (ADX)
-E 120 b=eeee- oo : o g 100 A * Beveled, A=100 um
E e ‘, @ B= 300 xm;
£ ol | g | £ 6=10° (CVD)
- | ot g
o £:° Pet 4 50 -
80 |- : : AA -
: A
] S R— ™l & ‘:“ o
. A
E . O T T T T
40 ‘ ‘ — | ' J ' 6 7 8 9 10 11
4 6 8 10 12 14 16 18 20 3
Fracture Toughness (MPa m'?) Volume (cm”/mol)
CVD single crystals are Single-crystal CVD anvils can
utratough and/or ultrahard generate multimegabar pressures

[Yan et al. Phys. Stat. Sol. 201, R27(2004)] [W. Mao et al., Appl. Phys. Lett. 83, 5190 (2003)]



OPPORTUNITIES AND CHALLENGES:
Towards TPa Pressures with Large Volume Anvil Cells

Characterization of CVD diamond single crystals by synchrotron IR
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CONCLUSIONS

1.

High pressure: a superb application of synchrotron IR
techniques, complementing hard x-rays and other
methods.

An essential tool for uncovering new physics and
chemistry of materials under extreme conditions.

. Numerous problems in Earth and planetary science can

now be addressed.

. Particularly important are the new far-IR developments

and integrated multi-probe approaches.

Numerous new high-pressure technique developments
are coming on line to complement the new generation
of synchrotron facilities: NSLS-II

. The pressure parameter should be an integral part of

sample environments at beamlines throughout NSLS-II.

Carnegie Institution
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